
Automotive cybersecurity: defending the trust boundary
To do that, they must create two ‘walls’ within the system. To protect the outer trust boundary, OEMs must secure all external connections (e.g. the cloud, shop tools, mobile phones) to the interior domain systems (e.g. the infotainment system) using a ‘security wall’. This security wall should ensure that hackers can’t gain access to the interior domain systems, while allowing communications from trusted sources. In a later blog article, we will demonstrate a method that could enable the security wall to make the distinction between trusted and not trusted: digital signatures.
To protect the inner trust boundary and the system’s safety, OEMs must separate the powertrain and chassis systems from the interior domain systems using a ‘safety wall’. This safety wall should ensure that if the security wall is breached and the interior domain systems are compromised, that the powertrain and chassis systems continue to function safely. The easiest way to achieve this would be to simply disconnect the infotainment system from the CAN bus. However, some information will still need to be shared across the safety wall. A better way would be to place a ‘gateway’ node between the infotainment system and the CAN bus. Such a gateway could allow specific data to be shared across the safety wall, while blocking all unexpected data.
However, just placing a gateway between the infotainment system and the CAN bus may not be enough. A hacker could potentially use any exposed system as an entry point, not necessarily just the infotainment system. Therefore, the safety wall should defend the inner trust boundary on all CAN nodes, and in both directions. That means the safety wall should protect each CAN node from outside attacks, as well as defending its component against attacks from within the CAN bus itself. One way to achieve that could be to make CAN nodes ‘suspicious’ of each other. Ideally, a protocol layered on top of the CAN protocol could ensure that a transmitting node uniquely identifies itself, and only the intended recipient node can interpret the data. Such a protocol would effectively force all CAN nodes to be well-behaved, thereby defending the trust boundary from within.
There are many more ways that hackers could use to gain access to connected cars, and we don’t claim that connected cars can ever be 100% safe and secure. Thanks to the efforts put in by OEMs, as well as upcoming standards for cybersecurity, the automotive industry is certainly making steps toward that goal. At BRACE Automotive, we are trying to do our part too.